Synthesis of Carbocyclic Homo-N-Nucleosides from Iridoids

Henrik Franzyk*, Jon Holbech Rasmussen, Raffaele Antonio Mazzei^[+], and Søren Rosendal Jensen

Department of Organic Chemistry, Technical University of Denmark, Anker Engelundsvej, Building 201, DK-2800 Lyngby, Denmark Fax: (internat.) +45-45933968

E-mail: okhf@pop.dtu.dk

Received May 26, 1998

Keywords: Nucleosides / Natural products / Iridoids / Catalpol / Antirrhinoside

Two iridoid glucosides, antirrhinoside (1) and catalpol (2), were converted into selectively protected polysubstituted cyclopentylmethanols, which were subsequently used to prepare carbocyclic homo-*N*-nucleosides (5, 6 and 14). A purine moiety was introduced either by the Mitsunobu

reaction or by substitution of a primary triflate with the tetrabutylammonium salt of 6-iodopurine. The latter method was superior with regard to both ease of purification and yield. The N-9 vs. N-7 regioselectivity of the salts of different 6-substituted purine derivatives was briefly investigated.

Introduction

In the last three decades a considerable number of nucleoside analogues have been prepared, and among these, the carbocyclic nucleosides form a well-known class of biologically active analogues. [1][2][3] However, the combination of a cyclic moiety and a methylene-linked nucleobase has only been investigated occasionally, e.g. homonucleosides containing a pyrrolidine ring, [4][5] homo-N-nucleosides, [6][7] and carbocyclic homo-N-nucleosides [8][9][10][11][12][13] have been reported. Previously, the iridoid glucoside aucubin has been converted into a 3'-hydroxymethyl analogue of Carbovir[®]. [14] In the present work, we exploit the use of chiral building blocks derived from the iridoid glucosides, antirrhinoside (1) and catalpol (2) to obtain enantiopure carbocyclic homo-N-nucleoside analogues. Also a refined coupling procedure for the preparation of methylene-linked nucleosides seemed appropriate, and for this purpose the Mitsunobu reaction and displacement of primary triflates are compared.

Results and Discussion

We have previously reported on the synthesis of the interconvertible monobenzoates **3a** and **3b**, which were obtained in five steps from **1**.^[15] Apparently, **3a/3b** underwent acyl migration during reverse-phase HPLC, but now we have obtained each isomer in crystalline form after further

Scheme 1. Synthesis of nucleoside analogues **5** and **6**: (a) 6-chloropurine, Ph₃P, DEAD, THF; (b) NaOMe/MeOH; (c) liquid NH₃, 45 °C, 3 d, 41% from **3a/3b**

Since laborious purifications are often associated with Mitsunobu reactions, a procedure employing a primary

purification by normal-phase vacuum liquid chromatography (VLC), which allowed full characterization. However, due to the observed benzoyl migration in low-scale experiments, monobenzoates 3a/3b were used as a mixture in a Mitsunobu coupling with 6-chloropurine. Although two hydroxy groups were left unprotected, a facile reaction took place exclusively at the primary position giving the two monobenzoates 4a and 4b (Scheme 1). These were obtained in a mixture with triphenylphosphane oxide, and were therefore characterized only by 1H -NMR spectroscopy. Debenzoylation of 4a/4b with sodium methoxide yielded the 6-methoxypurine derivative 5 while ammonolysis afforded the adenine derivative 6 in 41% overall yield based on 3a/3b. It is noteworthy that the epoxide functionality was stable under these conditions.

 $^{^{[+]}}$ Present address: Dipartimento di Chimica dell'Università "La Sapienza", P. le Aldo Moro 5, I-00185 Roma, Italy.

triflate was considered a suitable alternative. This would still allow coupling of the purine in the presence of an epoxide and acyl protecting groups. Recently, the tetrabutylammonium salt of 6-iodo-2-aminopurine was reported to give an especially high N-9 vs. N-7 selectivity in a substitution of a secondary triflate. [16] This prompted us to prepare the tetrabutylammonium salts of 6-benzamidopurine, 6-chloropurine, and 6-iodopurine, $7\mathbf{a} - \mathbf{c}$, respectively (Scheme 2). To investigate the regioselectivity of the salts 7a-c in the coupling with a primary triflate, we tested them in a reaction with triflate 8, [17] which was obtained from methyl 2,3,4-tri-O-benzoyl-α-D-glucopyranoside. [18] It was found that the N-9 vs. N-7 regioselectivity increased significantly through the series 7a-7c. For 7a, the poor selectivity (ca. 1:1) was expected, as two sets of signals were observed in its ¹H-NMR spectrum (probably arising from two tight ion pairs in equilibrium). On the other hand, each of the salts 7b and **7c** appeared as a single form in NMR, but nevertheless both N-9- and N-7-alkylated products (9b/10b and 9c/10c) were produced in ratios of 4:1 (81% isolated yield) and 12:1 (87% isolated yield), respectively. Transformation of 9c into the adenine derivative 11 was performed by treatment with liquid ammonia. For comparison, a Mitsunobu reaction with 6-chloropurine as the base was performed on methyl 2,3,4-tri-O-benzoyl-α-D-glucopyranoside^[18] to give the corresponding 9b as the only isolated product, but again this was contaminated with Ph₃PO. The yield was estimated from its ¹H-NMR spectrum to be ca. 70%.

Scheme 2. Model experiments with purine salts 7a-7c: (a) CH_2Cl_2 , room temp., 18 h; (b) liquid NH₃, 45°C, 3 d 89%

Next, catalpol (2) was investigated as starting material; it was converted into a functionalized cyclopentane $12a^{[19]}$ by performing a one-pot removal of the glucose moiety and reduction of the aglycone. Surprisingly, it proved possible to benzoylate positions 3, 6, and 10 selectively to give, in a moderate yield, tribenzoate 12c with the sterically hindered primary hydroxy group at C-1 left unprotected. The substi-

tution pattern of **12c** was evident from analysis of the ¹H-NMR spectrum. The tribenzoate, **12c**, was converted into triflate **12d**, which in turn was coupled with **7c** to yield protected nucleoside analogue **13** in 73% yield. Finally, ammonolysis afforded compound **14** in 86% yield. For comparison, a Mitsunobu coupling of **12c** and 6-chloropurine gave the 6-chloro analogue of **13** (60% estimated yield), which again was contaminated with Ph₃PO.

Scheme 3. Synthesis of nucleoside analogue **14**: (a) β -glucosidase, H₂O; (b) NaBH₄, 82% from **2**; (c) BzCl, pyridine, CH₂Cl₂, -78° C, 60%; (d) (CF₃SO₂)₂O, pyridine, CH₂Cl₂, -40° C to room temp., 4 h; (e) **7c**, CH₂Cl₂, -10° C, 18 h, 73% from **12d**; (f) liquid NH₃, 45° C, 3 d. 86%

Conclusion

Tentatively, we conclude that the use of a primary triflate in the preparation of methylene-linked nucleoside analogues is superior to the Mitsunobu procedure with regard to both ease of purification and yield.

The compounds prepared are structurally related to neplanocins B and C (**15** and **16**, respectively), which are known to be antibiotics, also exhibiting antitumor effects. [20][21] Compounds **5**, **6**, and **14** are currently being assayed for possible antiviral and antitumor activity.

We thank *The Danish National Research Councils* for financial support (grant no. 9501145).

Experimental Section

General Remarks: CH_2Cl_2 and pyridine were freshly distilled from CaH_2 . – Elemental analyses: Institute of Physical Chemistry,

Vienna. – Optical rotations: Perkin-Elmer 241 polarimeter. – Melting points are uncorrected. - TLC: Merck Silica Gel 60 F₂₅₄ aluminum sheets with detection by charring with sulfuric acid and/ or by UV light. - MPLC: Merck Lobar Lichroprep RP-18 (40-63 μ m) Fertigsäule (size B: 25 \times 310 mm) or on a column (size D: 50 \times 900 mm) packed with Polygoprep C₁₈ (50–60 μ m; 1.5 kg, from Macherey-Nagel). - VLC (vacuum liquid chromatography): Predried (120 °C; > 24 h) Merck Silica Gel 60H, column size is given as height \times diameter (cm). - NMR: Bruker AM-500 or HX-250. Solvents for ${}^{1}H$ NMR: $[D_{6}]DMSO$ ($\delta_{H}=2.50$), $[D_{4}]methanol$ (δ_H = 3.31), CDCl₃ (δ_H = 7.27), for ¹³C NMR: [D₆]DMSO (δ_C = 39.5), [D₄]methanol (δ_C = 49.0), CDCl₃ (δ_C = 77.0); assignments of ¹H-NMR spectra were based on 1D homonuclear decoupling experiments, while 13C-NMR spectra were assigned by using carbon-proton shift correlation spectra. The identity of N-7- vs. N-9alkylated purine derivatives was established by NMR spectroscopy and by their polarity. [22] - MS: VG trio 2 (direct inlet at 150-350°C).

Separation of **3a** and **3b**: A mixture of **3a** and **3b** (2:1, 550 mg) was dissolved in CH_2Cl_2 (5 ml) and loaded onto a VLC column (3.5 \times 3). Elution with hexane, and then hexane/Me₂CO (6:1 to 4:1) gave successive fractions of **3a** (372 mg) and **3b** (159 mg).

6-OBz Derivative 3a: M.p. 100–102 °C (from Me₂CO/hexane), [α]_D²³ = −40 (c = 0.7, Me₂CO). − ¹H NMR (500 MHz, [D₆]DMSO): δ = 1.42 (s, 3 H, 10-H), 2.13 (br. t, J = 4 Hz, 1 H, 9-H), 3.55 (dt, J = 11, 2 × 4 Hz, 1 H, 1a-H), 3.60 (dt, J = 11, 2 × 4 Hz, 1 H, 1a-H), 3.69 (dt, J = 10 Hz, 1 H, 5-OH), 4.06 (br. dd, J = 10, 6.5 Hz, 1 H, 5-H), 4.86 (t, J = 4 Hz, 1 H, 1-OH), 5.20 (dd, J = 6.5, 1 Hz, 1 H, 6-H), 7.54 (br. t, J = 8 Hz, 2 H, 2′-H and 6′-H), 7.67 (br. t, J = 8 Hz, 1 H, 4′-H), 8.02 (br. d, J = 8 Hz, 2 H, 3′-H and 5′-H); ′ denotes benzoyl signals. − ¹³C NMR (125 MHz, [D₆]DMSO): δ = 15.5 (C-10), 53.9 (C-9), 59.9 (C-1), 63.1 (C-7), 62.4 (C-8), 70.9 (C-5), 76.4 (C-6), 165.4 (PhCO). − C₁₄H₁₆O₅ (264.3): calcd. C 63.63, H 6.10; found C 63.82, H 6.07.

5-OBz Derivative **3b**: M.p. 151–152°C (from Me₂CO/hexane), $[\alpha]_{\rm D}^{23}=-78$ (c=0.8, Me₂CO). $-^{-1}{\rm H}$ NMR (500 MHz, [D₆]DMSO): $\delta=1.38$ (s, 3 H, 10-H), 2.22 (br. t, J=4 Hz, 1 H, 9-H), 3.34 (br. s, 1 H, 7-H), 3.55 (dt, J=11, 2 × 4 Hz, 1 H, 1a-H), 3.64 (ddd, J=11, 4.5, 3.5 Hz, 1 H, 1b-H), 4.38 (br. t, J=8.5 Hz, 1 H, 6-H), 4.88 (t, J=4.5 Hz, 1 H, 1-OH), 5.01 (d, J=8.5 Hz, 1 H, 6-OH), 5.14 (br. d, J=8 Hz, 1 H, 5-H), 7.51 (br. t, J=8 Hz, 2 H, 2'-H and 6'-H), 7.63 (br. t, J=8 Hz, 1 H, 4'-H), 8.00 (br. d, J=8 Hz, 2 H, 3'-H and 5'-H); ' denotes benzoyl signals. $-^{13}{\rm C}$ NMR (125 MHz, [D₆]DMSO): $\delta=15.4$ (C-10), 51.6 (C-9), 59.9 (C-1), 61.5 (C-8), 65.3 (C-7), 71.9 (C-6), 74.8 (C-5), 165.5 (PhCO). $-C_{14}{\rm H}_{16}{\rm O}_5$ (264.3): calcd. C 63.63, H 6.10; found C 63.81, H 6.19.

Mitsunobu Coupling of 5/6-OBz Derivatives 3a/3b: To a mixture of 3a and 3b (2:1, 290 mg, 1.1 mmol) in dry THF (20 ml) was added $\mbox{Ph}_3\mbox{P}$ (580 mg, 2.2 mmol) and 6-chloropurine (338 mg, 2.2 mmol). Diethyl azodicarboxylate (DEAD, 0.34 ml, 2.2 mmol) in THF (1 ml) was then added dropwise. After 1 h, TLC (hexane/ Me_2CO, 2:1) showed full conversion, and the solvent was removed. The residue was purified on a VLC column (6 \times 3). Elution with hexane and then hexane/Me_2CO (8:1 to 1:1) yielded fractions of impure 4a and 4b (566 mg, contaminated with Ph_3PO), characterized solely by $^1\mbox{H}$ NMR.

Compound **4a**: ¹H NMR (250 MHz, CDCl₃): $\delta = 1.58$ (s, 3 H, 10-H), 3.03 (br. dd, J = 10, 5.5 Hz, 1 H, 9-H), 3.58 (br. s, 1 H, H-7), 4.31 (dd, J = 14.5, 10 Hz, 1 H, 1b-H), 4.53 (br. d, J = 7 Hz, 1 H, 6-H), 4.53 (dd, J = 14.5, 5.5 Hz, 1 H, 1a-H), 5.02 (dd, J = 7,

1.5 Hz, 1 H, 5-H), 7.30–7.85 (*Ph*CO and *Ph*₃PO signals), 8.28 (s, 1 H, 2'-H), 8.76 (s, 1 H, 8'-H).

Compound **4b**: ¹H NMR (250 MHz, CDCl₃): $\delta=1.61$ (s, 3 H, 10-H), 2.98 (dd, J=10.5, 5.5 Hz, 1 H, 9-H), 3.80 (br. s, 1 H, 7-H), 4.01 (d, J=6 Hz, 1 H, 5-H), 4.21 (dd, J=14.5, 10.5 Hz, 1 H, 10b-H), 4.49 (dd, J=14.5, 5.5 Hz, 1 H, 10a-H), 5.34 (br. d, J=6 Hz, 1 H, 6-H), 7.40-8.10 (*Ph*CO and *Ph*₃P signals), 8.28 (s, 1 H, 2'-H), 8.81 (s, 1 H, 8'-H); ' denotes purine signals.

6-Methoxypurine Nucleoside Analogue 5: The combined impure fractions (566 mg) of 4a and 4b were treated with 0.1 M NaOMe in MeOH (20 ml) for 1 h at room temp. Then HOAc was added until pH = 7. The solvent was evaporated, and the residue was purified by MPLC. Elution with H_2O and then $H_2O/MeOH$ (10:1 to 3:1) afforded 5 (201 mg, 66% overall), m.p. 165-167°C (from EtOH), $[\alpha]_D^{23} = -8.8$ (c = 0.6, H_2O). $- {}^{1}H$ NMR (500 MHz, $[D_6]DMSO)$: $\delta = 1.42$ (s, 3 H, 10-H), 2.71 (dd, J = 10.5, 5 Hz, 1 H, 9-H), 3.38 (br. s, 1 H, 7-H), 3.43 (br. t, J = 7.5 Hz, 1 H, 5-H), 3.56 (d, J = 8.5 Hz, 1 H, 5-OH), 4.10 (dd, J = 14.5, 10.5 Hz, 1 H, 1a-H), 4.10 (s, 3 H, 6'-OMe), 4.14 (br. t, J = 6 Hz, 1 H, 6-H), 4.37 (dd, J = 14.5, 5 Hz, 1 H, 1b-H), 4.56 (d, J = 6.5 Hz, 1 H, 6-OH),8.48 (s, 1 H, 2'-H), 8.56 (s, 1 H, 8'-H); ' denotes purine signals. -¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 15.8$ (C-10), 42.8 (C-1), 51.4 (C-9), 53.9 (OMe), 62.2 (C-8), 65.1 (C-7), 70.9 (C-6), 70.4 (C-5), 120.5 (C-5'), 143.9 (C-8'), 151.5 (C-2'), 152.2 (C-4'), 160.3 (C-6'); ' denotes purine signals. $-C_{13}H_{16}N_4O_4$ (292.3): calcd. C 53.42, H 5.52, N 19.17; found C 53.52, H 5.41, N 19.08.

Adenine Derivative 6: A mixture of 4a/4b and Ph₃PO (1.29 g). prepared as above from 3a/3b (376 mg, 1.42 mmol), was treated with liquid NH₃ (ca. 20 ml) at 45 °C in a steel vessel for 3 d. The residue was dissolved in EtOH/MeOH (1:1, 6 ml) and loaded onto a VLC column (3.5 \times 3). Elution with hexane, CHCl $_3$, and then CHCl₃/MeOH (10:1 to 7:1) yielded 6 (161 mg, 41% overall), m.p. 162-164 °C (from EtOH), $[\alpha]_D^{23} = -15$ ($c = 0.5, H_2O$). $- {}^{1}H$ NMR (500 MHz, $[D_6]$ DMSO): $\delta = 1.42$ (s, 3 H, 10-H), 2.68 (dd, J = 10.5, 5.5 Hz, 1 H, 9-H), 3.38 (br. s, 1 H, 7-H), 3.45 (dd, J = 10.5, 5.5 Hz, 1 H, 9-H)8.5, 6.5 Hz, 1 H, 5-H), 3.51 (d, J = 8.5 Hz, 1 H, 5-OH), 3.98 (dd, J = 14.5, 10.5 Hz, 1 H, 1a-H), 4.12 (br. dd, J = 8, 6.5 Hz, 1 H, 6-H), 4.27 (dd, J = 14.5, 5.5 Hz, 1 H, 1b-H), 4.57 (d, J = 8 Hz, 1 H, 6-OH), 7.24 (br. s, 2 H, 6'-NH₂), 8.16 (s, 1 H, 2'-H), 8.22 (s, 1 H, 8'-H); ' denotes purine signals; additional signals for EtOH: $\delta = 1.18$ (t, J = 7 Hz, 3 H), 3.44 (m, 2 H), 4.35 (t, J = 5 Hz, 1 H, EtO*H*). $- {}^{13}$ C NMR (125 MHz, [D₆]DMSO): $\delta = 15.8$ (C-10), 42.2 (C-1), 51.5 (C-9), 62.3 (C-8), 65.0 (C-7), 70.3 (C-5), 71.0 (C-6), 118.6 (C-5'), 140.9 (C-8'), 149.7 (C-4'), 152.6 (C-2'), 156.0 (C-6'). - C₁₂H₁₅N₅O₃·EtOH (323.4): calcd. C 52.17, H 6.25, N 21.73; found C 52.40, H 6.31, N 21.90.

6-Iodopurine Tetrabutylammonium Salt **7c**: 6-Iodopurine hemihydrate (1.60 g, 6.29 mmol) was treated with tetrabutylammonium hydroxide (4.23 g of a 40% aq. solution, 6.52 mmol). Concentration gave crude **7c**, which was triturated with Et₂O to give yellow crystals (3.03 g, 98%) of m.p. $104-110\,^{\circ}$ C. Recrystallization from EtOAc gave pale yellow crystals, m.p. $118\,^{\circ}$ C. The salt was stable for several months when kept in a desiccator shielded from light. - ¹H NMR (250 MHz, CDCl₃): $\delta = 0.91$ (t, J = 7 Hz, 12 H, $CH_3[CH_2]_3-$), 1.31 (sext, J = 7 Hz, 8 H, $CH_3CH_2[CH_2]_2-$), 1.44 (m, 8 H, $CH_3CH_2CH_2CH_2-$), 2.98 (m, 8 H, $CH_3[CH_2]_2CH_2-$), 8.22 (s, 1 H, 8-H), 8.34 (s, 1 H, 2-H). - ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 13.6$, 19.6, 23.8, 58.5 ($CH_3CH_2CH_2CH_2-$), 117.0 (C-5), 140.9 (C-6), 148.3 (C-8), 156.8 (C-2), 159.4 (C-4). - $C_{21}H_{38}IN_5$ (487.5): calcd. C 51.74, H 7.86, I 26.03, N 14.37; found C 51.97, H 7.71, I 26.13, N 14.32.

FULL PAPER

6-Chloropurine Tetrabutylammonium Salt **7b**: Prepared from 6-chloropurine as described for **7c**; colourless solid (88% crude), which was crystallized, m.p. 86–87 °C (from EtOAc). – ¹H NMR (250 MHz, CDCl₃): (nBu)₄N⁺ signals: δ = 0.91 (12 H), 1.29 (8 H), 1.43 (8 H), 2.99 (8 H). Purine signals: δ = 8.25 (s, 1 H, 8-H), 8.49 (s, 1 H, 2-H).

6-Benzamidopurine Tetrabutylammonium Salt **7a**: Prepared from 6-benzamidopurine as described for **7c**. Colourless non-crystalline solid (87% crude). — 1H NMR (250 MHz, CDCl₃): (nBu)₄N⁺ signals: $\delta=0.91$ (12 H), 1.29 (8 H), 1.43 (8 H), 2.99 (8 H). Bz signals: $\delta=7.46$ (m, 3 H), 8.10 (br. d, J=8.5 Hz, 2 H). Purine signals: $\delta=8.12,\,8.16,\,8.59,\,8.63$ (each s, intensity 1:1:1:1, 2 H altogether).

Methyl 6- (Adenin-9-yl)-6-deoxy-α-D-glucopyranoside (11): Methyl 2,3,4-tri-O-benzoyl-α-D-glucopyranoside (759 mg, 1.50 mmol) [18] was converted into its triflate **8** (923 mg, 1.45 mmol) by adapting a literature procedure. [17] The triflate **8** was dissolved in dry CH₂Cl₂ (20 ml) and cooled in an ice bath. Then, **7c** (715 mg, 1.47 mmol) was added and the clear solution was stirred for 18 h at room temp. The mixture was purified by VLC (4 × 3). Elution with hexane/EtOAc (1.75:1) gave **9c** (860 mg, 81%), while hexane/EtOAc (1:2) gave **10c** (70 mg; 7%). Compound **9c** (458 mg, 0.62 mmol) was treated with liquid NH₃ as described for **6**, and MPLC gave **11** (174 mg, 89%), m.p. 199 °C, $[\alpha]_D^{23} = +86$ (c = 0.4, H₂O) as earlier reported. [23][24]

6-Iodopurin-9-yl Derivative **9c**: M.p. 204–205 °C (from EtOH), $[\alpha]_D^{23} = +36.5$ (c=0.8, CHCl $_3$). $^{-1}$ H NMR (500 MHz, CDCl $_3$): $\delta=3.14$ (s, 3 H, 1'-OMe), 4.46-4.63 (m, 3 H, 5'-H and $2\times6'$ -H), 5.20-5.25 (m, 2 H, 1'-H and 2'-H), 5.33 (t, J=9.5 Hz, 1 H, 4'-H), 6.14 (t, J=9.5 Hz, 1 H, 3'-H), 7.25-8.05 (m, 15 H, $3\times Ph$ CO), 8.34 (s, 1 H, 2-H), 8.51 (s, 1 H, 8-H); ' denotes sugar signals. - 13 C NMR (125 MHz, CDCl $_3$): $\delta=44.5$ (C-6'), 55.7 (MeO), 67.7 (C-5'), 69.9 (C-3'), 70.3 (C-4'), 71.7 (C-2'), 97.2 (C-1'), 122.1 (C-5), 128.2-133.7 (PhCO), 138.2 (C-6), 145.4 (C-8), 148.0 (C-4), 152.0 (C-2), 165.5, 165.6, 165.7 (3 × Ph'CO). - C $_{33}$ H $_{27}$ IN $_4$ O $_8$ (734.5): calcd. C 53.96, H 3.71, I 17.28, N 7.63; found C 53.87, H 3.89, I 17.51, N 7.71.

6-Iodopurin-7-yl Derivative **10c**: 1H NMR (250 MHz, CDCl₃): $\delta=2.90$ (s, 3 H, 1'-OMe), 4.20–4.45 (m, 3 H, 5'-H and 2 × 6'-H), 5.17 (d, 1 H, J=4 Hz, 1'-H), 5.30 (m, 1 H, 2'-H), 5.51 (t, J=10 Hz, 1 H, 4'-H), 6.22 (t, J=10 Hz, 1 H, 3'-H), 7.20–8.05 (m, 15 H, 3 × *Ph*CO), 8.48 (s, 1 H, 2-H), 8.72 (s, 1 H, 8-H); ' denotes sugar signals.

6-Chloropurinyl Derivatives **9b/10b**: Prepared and separated as described for **9c/10c**. Compounds **9b/10b** were obtained in a 4:1 ratio (81% total yield). For **9b**, 1 H NMR (250 MHz, CDCl₃): δ = 8.28 (s, 1 H, 2-H), 8.55 (s, 1 H, 8-H). Sugar signals essentially as in **9c**. $^{-13}$ C NMR (62.5 MHz, CDCl₃): δ = 44.4 (C-6′), 55.7 (MeO), 67.6 (C-5′), 69.8 (C-3′), 70.1 (C-4′), 71.7 (C-2′), 97.1 (C-1′), 122.1 (C-5), 129.8–128.2 (*Ph*CO), 131.1 (C-5), 133.2–133.7 (*Ph*CO), 146.1 (C-8), 151.0 (C-4), 151.7 (C-6), 152.0 (C-2), 165.5, 165.6 (Ph*C*O); ′ denotes sugar signals. For **10b**, 1 H NMR (250 MHz, CDCl₃): δ = 8.41 (s, 1 H, 2-H), 8.82 (s, 1 H, 8-H). Sugar signals essentially as in **10c**.

6-Benzamidopurinyl Derivatives 9a/10a: Prepared as described for 9c/10c. TLC of the reaction mixture showed two product spots ($R_{\rm f}=0.25$ and 0.33, hexane/acetone 1:1) with equal UV intensity.

Isolation of Catalpol (2) from Scutellaria albida: The ethanol extract of fresh plant material (4.18 kg) was partitioned between $\rm H_2O$ and $\rm Et_2O$. The aq. phase was adjusted to a volume of 400 ml, and was then washed with EtOAc (5 \times 500 ml) and $\it nBuOH$ (500 ml). The combined organic phases were re-extracted with $\rm H_2O$ (2 \times 250

ml). The aq. phases were concentrated to yield a residue (100 g), which was dissolved in saturated aq. NaHCO $_3$ (1.4 l) and adsorbed on act. charcoal (350 g). The suspension was filtered, and the charcoal eluted successively with H $_2$ O (22 l) and MeOH (6 l). Concentration of the MeOH eluate yielded crude 2 (25 g), which was purified by reversed-phase MPLC (several runs) to give pure 2 (16.3 g, 0.34% of fresh weight).

One-Pot Preparation of Tetrol 12a: Glucoside 2 (1.01 g, 2.8 mmol) was treated with β -glucosidase (35 mg; Sigma) in H_2O (10 ml) for about 18 h at 35 °C. Upon cooling to room temp., NaBH₄ (167 mg, 4.4 mmol) was added to the mixture. After 1 h, the mixture was neutralized with HOAc, charcoal (5.8 g) was added, and upon stirring for 5 min, the charcoal was filtered off on Celite. The charcoal was eluted with H_2O (10 ml) and then with MeOH (2 \times 15 ml). Concentration of the MeOH fractions yielded 12a (0.47 g, 82%), colourless oil. – ^{1}H NMR (500 MHz, [D₄]methanol): $\delta =$ 1.70-1.85 (m, 3 H, 2 × 4-H and 5-H), 2.35 (br. dt, J = 7.5 Hz, 2 \times 2.5 Hz, 1 H, 9-H), 3.37 (d, J = 1 Hz, 1 H, 7-H), 3.56-3.67 (m, 2 H, 3-H), 3.62 (d, J = 12.5 Hz, 1 H, 10a-H), 3.69 (dd, J = 11.5Hz, 2.5 Hz, 1 H, 1a-H), 3.83 (dd, J = 11.5 Hz, 2.5 Hz, 1 H, 1b-H), 3.99 (dd, J = 7.5 Hz, 1 Hz, 1 H, 6-H), 4.10 (d, J = 12.5 Hz, 1 H, 10b-H). - ¹³C NMR (125 MHz, [D₄]methanol): $\delta = 31.9$ (C-4), 41.4 (C-5), 43.9 (C-9), 59.1 (C-1), 61.9 (C-10), 62.7 (C-3), 63.5 (C-7), 67.2 (C-8), 78.3 (C-6).

Tetracetate **12b**: A small sample of **12a** was acetylated in Ac₂O/pyridine (1:1). Work-up gave tetraacetate **12b** with 1 H-NMR data as earlier published. $^{[19]}$ – 13 C NMR (125 MHz, CDCl₃): δ = 26.6 (C-4), 36.3 (C-5), 39.3 (C-9), 59.3 (C-7), 60.8 (C-1), 62.4 (C-10), 62.7 (C-3), 62.9 (C-8), 78.4 (C-6), 171.3, 170.9, 170.4, 170.3 (4 × CH₃CO); signals for C-1, C-3, C-7 and C-8 have been reassigned.

Tribenzoate 12c: To a solution of tetrol 12a (315 mg, 1.54 mmol) in dry pyridine/CH₂Cl₂ (1:1, 20 ml) at -78°C was added BzCl (0.58 ml, 5.00 mmol) in CH₂Cl₂ (10 ml). The mixture was stirred at -78°C for 2.5 h, when more BzCl (89 μl, 0.77 mmol) in dry CH₂Cl₂ (3 ml) was added. After an additional 0.5 h, EtOH (0.5 ml) was added. The mixture was diluted with CH₂Cl₂ (100 ml) and washed successively with 2 $_{\rm M}$ H_2SO_4 (20 ml), saturated aq. $NaHCO_3$ (30 ml) and brine (40 ml). The organic layer was dried (Na₂SO₄) and concentrated. The residue was purified on a VLC column (4 \times 3). Elution with hexane and then hexane/Me₂CO (6:1) gave the desired **12c** (480 mg, 60%), colourless foam, $[\alpha]_D^{23} = -97$ (c = 0.3, CHCl₃). - ¹H NMR (500 MHz, CDCl₃): $\delta = 2.04-2.14$ (m, 2 H, 4-H), 2.52 (br. p, J=8 Hz, 1 H, 5-H), 2.64 (br. dt, J=8 Hz, 2 \times 2.5 Hz, 1 H, 9 -H), 3.90 (d, J = 1 Hz, 1 H, 7 -H), 3.97 (dd, J = 11.5 HzHz, 2.5 Hz, 1 H, 1a-H), 4.06 (dd, J = 11.5 Hz, 2.5 Hz, 1 H, 1b-H), 4.32-4.40 (m, 2 H, 3-H), 4.43 (d, J = 12.5 Hz, 1 H, 10a-H), 5.02 (d, J = 12.5 Hz, 1 H, 10b-H), 5.42 (dd, J = 9 Hz, 1.5 Hz, 1H, 6-H), 7.35-7.45 (m, 6 H, $3 \times 3'$ -H and $3 \times 5'$ -H), 7.50-7.59(m, 3 H, 4'-H), 7.96-8.06 (m, 6 H, 3 \times 2'-H and 3 \times 6'-H); ' denotes benzoyl signals. - ^{13}C NMR (125 MHz, CDCl₃): $\delta = 26.8$ (C-4), 36.8 (C-5), 42.0 (C-9), 58.6 (C-1), 59.9 (C-7), 63.2 (C-10), 63.7 (C-3 and C-8), 79.6 (C-6), 166.7, 166.5, 166.3 (3 \times PhCO). – C₃₀H₂₈O₈ (516.6): calcd. C 69.76, H 5.46; found C 69.82, H 5.33.

Triflylation of Tribenzoate **12c** and Coupling with Tetrabutylammonium Salt **7c**. — Compound **13**: To a solution of dry pyridine (90 μ l, 1.12 mmol) in dry CH₂Cl₂ (5 ml) at $-40\,^{\circ}$ C was slowly added a solution of (CF₃SO₂)₂O (168 μ l, 1.02 mmol) in dry CH₂Cl₂ (5 ml). After the suspension was stirred for another 5 min, **12c** (335 mg, 0.65 mmol) in CH₂Cl₂ (8 ml) was added dropwise. The mixture was allowed to heat to 0 °C during 2 h, and was then stirred at room temp. for another 2 h. The clear solution was diluted with CH₂Cl₂ (35 ml) and ice (5 g) was added. The organic phase was

washed successively with cold 3% aq. HCl (10 ml), saturated aq. NaHCO₃ (20 ml) and brine (25 ml). Upon drying (Na₂SO₄), the volume was reduced to ca. 20 ml in vacuo and 4 Å molecular sieves (ca. 3 g) were added. After stirring for 15 min at 0°C, the tetrabutylammonium salt 7c (350 mg, 0.72 mmol) was added to the solution. Stirring was continued for 2 h at 0° C and 18 h at -10° C. The mixture was filtered and the filtrate was concentrated to ca. 5 ml, which was loaded onto a VLC column (4.5 \times 3). Elution with hexane and then hexane/Me₂CO (3:1) yielded benzoate 13 (354 mg, 73%) as an unstable solid which could only be stored below -10° C; $[\alpha]_D^{23} = -49$ (c = 0.5, CHCl₃). $- {}^{1}$ H NMR (250 MHz, CDCl₃): $\delta = 2.04-2.14$ (m, 2 H, 4-H), 2.74 (br. p, J = 8 Hz, 1 H, 5-H), 3.77 (ddd, J = 9.5 Hz, 7.5 Hz, 4 Hz, 1 H, 9-H), 3.97 (d, J = 1 Hz, 1 H, 7-H), 4.05 (d, J = 13 Hz, 1 H, 10a-H), 4.35-4.60 (m, 3 H, 2 \times 3-H and 1a-H), 4.67 (dd, J = 14.5 Hz, 4 Hz, 1 H, 1b-H), 4.77 (d, J = 13 Hz, 1 H, 10b-H), 5.34 (dd, J = 9.5 Hz, 1 Hz, 1 H, 6-H), 7.31-8.06 (15 H, $3 \times PhCO$), 8.32 (s, 1 H, 2'-H), 8.49 (s, 1 H, 8'-H); ' denotes purine signals. - ¹³C NMR (125 MHz, CDCl₃): $\delta = 26.7 \text{ (C-4)}, 36.5 \text{ (C-5)}, 39.0 \text{ (C-9)}, 42.3 \text{ (C-1)}, 58.4 \text{ (C-7)}, 62.7$ (C-10), 63.5 (C-3), 63.6 (C-8), 77.6 (C-6), 122.4 (C-5'), 138.5 (C-6'), 144.3 (C-8'), 147.9 (C-4'), 151.7 (C-2'), 166.5, 166.3, 166.2 (3 × Ph CO); ' denotes purine signals. – CI MS (NH₃ as reagent gas); $\it m/z$: 745 [M⁺ + H]. - C₃₅H₂₉IN₄O₇ (744.5).

Ammonolysis of 13. - Nucleoside Analogue 14: Compound 13 (275 mg, 0.37 mmol) was treated with liquid NH₃ in a closed metal vessel at 45°C for 3 d. The residue was dissolved in EtOH/MeOH (2:1, 3 ml) and applied to a VLC column (3 \times 3). Elution with hexane, CHCl3 and then CHCl3/MeOH (2:1) gave an impure fraction of 14, purified by MPLC (size B column). Elution with H₂O/ MeOH (3:1) yielded nucleoside analogue 14 (102 mg, 86%), as a hygroscopic foam, [α]_D²³ = -57 (c = 0.5, H₂O). - ¹H NMR (500 MHz, [D₆]DMSO): δ = 1.50 (m, 1 H, 4a-H), 1.58 (dq-like, J = 14 Hz, 3×7 Hz, 1 H, 4b-H), 1.80 (dq-like, J = 9 Hz, 3×7 Hz, 1 H, 5-H), 3.06 (br. q, J = 7 Hz, 1 H, 9-H), 3.26 (dd, J = 13 Hz, 5.5 Hz, 1 H, 10a-H), 3.30 (m, 1 H, 3a-H), 3.33 (br. s, 1 H, 7-H), 3.36 (m, 1 H, 3b-H), 3.70 (dd, J = 13 Hz, 5.5 Hz, 1 H, 10b-H), 3.73(dd, J = 9 Hz, 5.5 Hz, 1 H, 6-H), 4.16 (dd, J = 14.5 Hz, 7 Hz, 1)H, 1a-H), 4.20 (dd, J = 14.5 Hz, 7.5 Hz, 1 H, 1b-H), 4.47 (t, J =5 Hz, 1 H, 3-OH), 4.66 (t, J = 5.5 Hz, 1 H, 10-OH), 5.08 (d, J =5.5 Hz, 1 H, 6-OH), 7.18 (br. s, 2 H, 6'-NH₂), 8.14 (s, 1 H, 2'-H), 8.18 (s, 1 H, 8'-H); ' denotes purine signals. - 13C NMR (125 MHz, $[D_6]DMSO$): $\delta = 30.2$ (C-4), 39.3 (C-5), 39.7 (C-9), 40.5 (C-1), 59.5 (C-10), 60.1 (C-3), 60.8 (C-7), 65.7 (C-8), 74.6 (C-6), 118.7

(C-5'), 140.8 (C-8'), 149.6 (C-4'), 152.2 (C-2'), 155.9 (C-6'); ' denotes purine signals. – CI MS (NH₃ as reagent gas); m/z: 322 [M⁺ + H]. - $C_{14}H_{19}N_5O_4 \cdot 1/2 H_2O$ (321.14): calcd. C 50.90, H 6.10, N 21.20; found C 50.77, H 6.00, N 20.86.

- L. Agrofoglio, E. Suhas, A. Farese, R. Condom, S. R. Challand, R. A. Earl, R. Guedj, *Tetrahedron* **1994**, *50*, 10611–10670
- A. D. Borthwick, K. Biggadike, *Tetrahedron* **1992**, *48*, 571–623. V. E. Marquez, M.-I. Lim, *Med. Res. Rev.* **1986**, *6*, 1–40.
- C.-H. Wong, L. Provencher, J. A. Porco, S.-H. Jung, Y.-F. Wang, L. Chen, R. Wang, D. H. Steensma, J. Org. Chem. 1995, 60,
- L. Deng, O. D. Schärer, G. L. Verdine, J. Am. Chem. Soc. 1997, 119, 7865-7866.
- N. Hossain, N. Blaton, O. Peeters, J. Rozenski, P. A. Herdewijn,
- *Tetrahedron* **1996**, 5563—5578.
 B. Doboszewski, *Nucleosides Nucleotides* **1997**, *16*, 1049—1052.
- S. Halazy, M. Kenny, J. Dulworth, A. Eggenspiller, *Nucleosides Nucleotides* **1992**, *11*, 1595–1606.
- N. Katagiri, H. Sato, C. Kaneko, *Nucleosides Nucleotides* **1992**, *11*, 707–718.
- [10] L. Santana, M. Teijeira, E. Uriarte, C. Terán, G. Andrei, R. Snoeck, E. De Člerq, Nucleosides Nucleotides 1997, 16, 1337 - 1339
- [11] V. Escuredo, B. Ferro, L. Santana, M. Teijeira, E. Uriarte, Nu-
- cleosides Nucleotides 1997, 16, 1453—1456. C. Balo, F. Fernández, E. Lens, C. Lopez, E. De Clercq, G. Andrei, R. Snoeck, J. Balzarini, Nucleosides Nucleotides 1996, 15, 1335-1346
- [13] C. Balo, J. M. Blanco, F. Fernández, E. Lens, C. Lopez, Tetrahedron 1998, 54, 2833-2842
- Bianco, R. A. Mazzei, Tetrahedron Lett. 1997, 38, 6433 - 6436.
- [15] H. Franzyk, J. H. Rasmussen, S. R. Jensen, Eur. J. Org. Chem. **1998**, 365-370.
- [16] G. S. Bisacchi, J. Singh, J. D. Godfrey, T. P. Kissick, T. Mitt, M. F. Malley, J. D. Di Marco, J. Z. Gougoutas, R. H. Mueller, R. Zahler, *J. Org. Chem.* **1995**, *60*, 2902–2905.
- [17] T. W. Flechtner, *Carbohydr. Res.* **1979**, 77, 262–266. [18] R. D. Guthrie, A. D. Jenkins, J. Stehlicek, *J. Chem. Soc. C* **1971**, 2690-2696.
- E. Davini, C. Iavarone, C. Trogolo, Heterocycles 1988, 27, -61.
- [20] M. Hayashi, S. Yaginuma, N. Muto, M. Tsujino, Nucleic Acids Symp. Ser. 1980, 8, 65-67.
- [21] F. Kawana, S. Shigeta, M. Hosoya, H. Suzuki, E. De Clercq,
- Antimicrob. Agents Chemother. **1987**, 31, 1225–1230. A. Toyota, N. Katagiri, C. Kaneko, Synth. Commun. **1993**, 23, 1295 - 1305.
- [23] S. Fukatsu, Y. Takeda, S. Umezawa, Bull. Chem. Soc. Jpn. 1973,
- 46, 3165-3168.
 N. Ueda, Y. Nakatani, S. Terada, K. Kondo, K. Takemoto, Technol. Rep. Osaka Univ. 1973, 23, 713-714.

[98238]